How are future climates projected under a global warming in a computer?

~Advantages of a high resolution model~

Tosiyuki NAKAEGAWA

Japan Meteorological Business Support Center Meteorological Research Institute, Tsukuba, Japan

How is a future climate projected?

IPCC AR6 WGI Interactive Atlas

Total Diversi Diversi Model Exhibit liner 250 (Medium) Gruy rhedrug Extense period Uger / davis virus Epimad Pio-700 / PSE-7E.

IPCC AR6 WGI Report

Today's contents

- Basics of future climate projections in a computer
- Advantages of a model with a higher horizontal resolution

Processes in the Earth System

Development of CGCMs

Configuration of a GCM for future climate projections

Atmosphere, land, and ocean are discretized:
Atmospher:320x160x48

Ocean: 360x364x51

we and physi

Flows and physical processes are simulated

for each grid

Figure 1 Configuration of the component models in MRI-ESM1. Green arrows denote data exchange with using Scup between the component models.

(Yukimoto et al. 2011)

How these processes are implemented in a computer?

Navier-Stokes equation

$$\begin{cases} \rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, p) = \boldsymbol{f} & \text{in } \Omega \times (0, T) \\ \nabla \cdot \boldsymbol{u} = 0 & \text{in } \Omega \times (0, T) \\ \boldsymbol{u} = \boldsymbol{g} & \text{on } \Gamma_D \times (0, T) \\ \boldsymbol{\sigma}(\boldsymbol{u}, p) \hat{\boldsymbol{n}} = \boldsymbol{h} & \text{on } \Gamma_N \times (0, T) \\ \boldsymbol{u}(0) = \boldsymbol{u}_0 & \text{in } \Omega \times \{0\} \end{cases}$$

Discretization of the equations above

$$\frac{\partial u}{\partial t} \to \frac{u_j^{n+1} - u_j^n}{\Delta t}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2}$$

A code for a computer

```
do j=1,latg2_{-}
     do i=1,lonf2
       ftsea(i,j)=ftsea(i,j)+tsea(i,j)*weight(ifstep)
       fsheleg(i,j)=fsheleg(i,j)+sheleg(i,j)*weight(ifste
       ftg3(i,j)=ftg3(i,j)+tg3(i,j)*weight(ifstep)
       fzorl(i,j)=fzorl(i,j)+zorl(i,j)*weight(ifstep)
       fplantr(i,j)=fplantr(i,j)+plantr(i,j)*weight(ifstep)
       fcv(i,j)=fcv(i,j)+cv(i,j)*weight(ifstep)
       do il = 1, 4
falbedo(i,j,il)=falbedo(i,j,il)+albedo(i,j,il)*weight(ifstep
       enddo
```

```
enddo

ff10m(i,j)=ff10m(i,j)+f10m(i,j)*weight(ifstep)

fcanopy(i,j)=fcanopy(i,j)+canopy(i,j)*weight(ifs

isl=nint(slmsk(i,j))+1

islmsk(i,j,isl)=islmsk(i,j,isl)+1

if(cvb(i,j).ne.cvb0) then

fcvb(i,j)=fcvb(i,j)+cvb(i,j)*weight(ifstep)

wcvb(i,j)=wcvb(i,j)+weight(ifstep)

Webinae Analif 9, 2024
```

Emission scenario SSP

Meteorological Research

Institute

Historical and future global mean CO₂

November 6-18, 2022 in Sharm el-Sheikh, Egypt

Given the current emissions rate and global efforts to reduce emissions, it is not very likely that SSP2-4.5 will be exceeded. COP27 reported an increase of 2.5°C by the end of the century. COP27 reported an increase of 2.5°C at the end of the century.

Supercomputer is essential for climate projections

Multi-architecture supercomputer based on AMD EPYC CPUs, combined with accelerators, Earth Simulator 4

GPUs: 64 of Nvidia A100

Memory: total 556.5 TB

• Performance: 19.5 PFLOPS

• Interconnection: 200 Gb/s

• Release: 2021

Operational in Deutscher
Wetterdienst since 2019 as well

Needs for high-resolution models

In order to make a progress in adaptation planning, we need

- 1. to project future weather extremes such as typhoon and heavy rainfall triggering natural disasters, and
- 2. to assess their impact on our lives.

- representation of topography depends on resolution
- low resolution models often fail to reproduce precipitation systems such as tropical cyclones, stationary front systems, and blocking
- high resolution models generally have better mean climate

Topography dependent on resolutions

Days of precipitation greater than 30mm/day between resolutions

Typhoon prediction between 60km and 20km mesh models

Webinar August 19, 2024

Time-Slice Experiments with high-horizontal resolution

- Present-day climate experiment (1979-2003)
 - the observed sea surface temperature (SST) and seaice concentration
- Future climate experiment (2075-2099)
 - the warming in the SST for the CMIP5/6 multi-model ensemble mean is added to the observed SST

linear trend in CGCMs

Future climate projections

June-Aug Precipitation in a future climate

Precipitation Change ratio (%)

Month=6 to 8

Dr. Kusunoki

Present SP0A: 1979-2003

Future SF0A: 2075-2099

Contour: 95% significant

Future: 2075-2099

A drought index

Dr. Kusunoki

Maximum number of consecutive dry days (CDD)

where "dry day": day of precipitation < 1 mm/day

Change in consecutive dry days in a future climate

Consecutive Dry Days (CDD) change (%)

Present SP0A: 1979-2003

Future SF0A: 2075-2099

Color: 95% significant

Dr. Kusunoki

Future: 2075-2099

Simple daily precipitation intensity index (SDII)

Dr. Kusunoki

where "rain day": day of precipitation ≥ 1 mm/day

Change in precipitation intensity in a future climate

Simple Daily precip Int Index (SDII) change (%)

Dr. Kusunoki

Present SPOA: 1979-2003 Future SFOA: 2075-2099

Color: 95% significant

Future: 2075-2099

SENTAN Theme-3: future climate projections in Japan

Time-sequential experiments
AOGCM

Time-sliced experiments AGCM

- Present-day climate (1979-2003)
- Future climate (2075-2099)

DDS under the CMIP6 conditions can be performed now!

Improvement in interactions btw atmosphere and oceans

Meteorological Research Institute

Meteorological Research Institute

Network of the first transfer of the fir

Please contact me if you are interested in analyzing future climate in Cambodia.

Thank you for your attention

