Integrated Flood Analysis System (IFAS) for prompt implementation of flood analysis & forecasting system in poorly-gauged rivers using multiple sources of rainfall and global GIS databases

Kazuhiro FUKAMI, Seishi NABESAKA, Mamoru MIYAMOTO and Ai SUGIURA

International Centre for Water Hazard and Risk Management under the auspices of UNESCO (UNESCO-ICHARM), Public Works Research Institute (PWRI), Japan

Problems of flood forecasting system installation in poorly-gauged river basins

- Difficulty to get real-time hydrological data in the upstream of a transboundary river basin
- Insufficient of implementation and maintenance of ground-based real-time hydrological observation stations, such as raingauge and river discharge gauging station with data transmission system.
- Lack of the data required for creation of a flood forecasting model such as altitude, land use, river channel network, etc.
- Difficulty of the expense burden which is needed for a flood forecasting system installation
- Insufficient framework to enhance technical capabilities

Rainfall observation by hand
Houses built along a river
Integrated Flood Analysis System IFAS
Toolkit to implement “Global Flood Alert System (GFAS) – Streamflow”

Concept of development IFAS &
Introduction of satellite-based rainfall data
GFAS-Streamflow = Prompt implementation of flood forecasting system in poorly-gauged river basins all over the world with satellite-based rainfall data and global GIS data

Satellite-based rainfall
Local data (Ground rainfall)

Global GIS data
Elevation data, Land use data, etc.

Data input
Model creation
Run-off analysis
Output

IFAS

Prompt & effective implementation of flood forecasting system and step-by-step improvement of the accuracy with in-situ data

Satellite-based rainfall data

- There is no necessity for installation and maintenance of a rain gauge or transmission equipment.
- Ground-based rainfall data are indispensable to get highly-accurate flood runoff analysis and forecast.
- Almost the worldwide coverage and a consistent accuracy are obtained.
- Resolution (time and space) and observation accuracy are low compared with properly-distributed ground-based rainfall data.

<table>
<thead>
<tr>
<th>Product name</th>
<th>SBA2RT</th>
<th>CMORPH</th>
<th>GSMaP_nRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developer and provider</td>
<td>NASA/GSFC</td>
<td>NOAA/CPC</td>
<td>JAXA/EORC</td>
</tr>
<tr>
<td>Coverage</td>
<td>60° - 860°</td>
<td>0.25°</td>
<td>0.1°</td>
</tr>
<tr>
<td>Resolution</td>
<td>1997</td>
<td>1999</td>
<td>2002</td>
</tr>
<tr>
<td>Resolution time</td>
<td>3 hours</td>
<td>3 hours</td>
<td>1 hour</td>
</tr>
<tr>
<td>Time lag</td>
<td>10 hours</td>
<td>15 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>Coordinate system</td>
<td>WGS</td>
<td>WGS</td>
<td>WGS</td>
</tr>
</tbody>
</table>

GSMaP_nRT

http://sharaku.eorc.jaxa.jp/GSMaP/index.htm
Algorithm for self-correction of satellite-based rainfall data without any ground-based rainfall data

A hypothesis on the reason why this self-correction is empirically effective.

Effect of the ICHARM's self-correction method of satellite-based rainfall
- Self-corrected GSMaP_nRT can effectively reduce the degree of underestimation for heavy rainfall data without any real-time ground-based rainfall data.
- IFAS implements this self-correction method.

Ground gauged rainfall

Typhoon No. 8 in 2009 (Typhoon Morakot)
Rainfall distribution in Taiwan (3-hour cumulative rainfall)
Main features

Not only ground-based but also satellite-based rainfall data as an input data

Model creation using global GIS data

Development of IFAS
1st Phase (FY2005-2007)

Under the framework of “joint research & development” among
ICHARM / Public Works Research Institute (PWRI),
Infrastructure Development Institute (IDI / Secretariat of IF-Net),
and nine major civil-engineering consulting companies, as shown below:

International Centre for Water Hazard and Risk Management (ICHARM)
Public Works Research Institute (PWRI)
CTI Engineering Co., Ltd.
NIPPÓN KOEi Co., Ltd.
IDEA Consultanis, Inc.
Yachiyo Engineering Co., Ltd.
Pacific Consultants Co., Ltd.
Tokyo Kensetsu Consultants Co., Ltd.
NEWJEC Inc.
CTI Engineering International Co., Ltd.
Infrastructure Development Institute (IDI)
Kokusai Kogyo Co., Ltd.
Default runoff analysis models on IFAS

Three types of distributed hydrological models

- **PDWI Distributed Hydrological Model (PDHM Ver.2)** (for flood events, below)
 - 3-layer model for wide availability from low to high flows
- **PDWI Distributed Hydrological Model (PDHM Ver.1)** (for flood & long-term flows)
 - Yoshino, Yoshitani & Horiuchi (1990)
 → to be released in IFAS Ver.1.3
- **BTOP Model (for a variety of hydrological conditions)**

Design concept of IFAS

1. To prepare interfaces to get satellite-based rainfall data in addition to ground-based rainfall data, to secure the worldwide availability of input data for flood forecasting/analysis system.

2. To adopt two types of distributed-parameter hydrologic models, the parameters of which can be estimated as the first approximation based on globally-available GIS databases to secure the worldwide availability of hydrologic models for flood forecasting/analysis.

3. To implement GIS analysis modules in the system to set up the parameters for the flood forecasting/analysis model, therefore no need to depend on external GIS softwares.

4. To prepare a series of easy-to-understand graphical user interfaces for data input, modeling, runoff-analysis, and displaying the outputs.

5. To distribute the executable program, free of charge, from the ICHARM/PWRI website
Flood runoff simulation model creation using global GIS data

<table>
<thead>
<tr>
<th>Type</th>
<th>Product (Elevation data)</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>Global Map</td>
<td>ISCGM</td>
</tr>
<tr>
<td></td>
<td>GTOP30</td>
<td>USGS</td>
</tr>
<tr>
<td></td>
<td>Hydro1k</td>
<td>USGS</td>
</tr>
<tr>
<td></td>
<td>GLCC</td>
<td>USGS</td>
</tr>
<tr>
<td>Land use</td>
<td>Global Map (Land cover)</td>
<td>ISCGM</td>
</tr>
<tr>
<td></td>
<td>Global Map (Land use)</td>
<td>ISCGM</td>
</tr>
<tr>
<td>Geology</td>
<td>Global Map</td>
<td>ISCGM</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td>CGWM</td>
</tr>
<tr>
<td>Soil type</td>
<td>Soil Texture</td>
<td>UNEP</td>
</tr>
<tr>
<td></td>
<td>Soil Water Holding Capacity</td>
<td>UNEP</td>
</tr>
<tr>
<td></td>
<td>Soil Depth</td>
<td>GES</td>
</tr>
</tbody>
</table>

Example of elevation data of each cell and a river channel network

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Flow direction generation</th>
<th>Basin boundary and pseudo river-channel generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>116.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creation of River channel network and basin shape based on elevation data

1. Import GIS data
2. Distribute GIS data into some classes
3. Input value for each tank
4. Set value for each cell

Parameter estimation using GIS data

- Land use classification (GlobalMap)
- Surface parameter
- Infiltration Roughness
- Parameter set

IFAS has already set default parameter.
Each parameter reflects local condition.

Imported GIS data

- Land use/Land cover
- Soil
- Geology

Surface groundwater
Examples of IFAS applications to flood runoff analyses
IFAS-based runoff analysis: Sendai River, Japan

L=137km A=1,600km²

Good accuracy

- A flood-runoff event analysis in the Sendai River basin of Japan was very accurately reproduced with IFAS using the ICHARM’s self-corrected satellite-based rainfall data without any in-situ ground-based rainfall data, in spite of the under-estimation of rainfall rate in its original GSMaP product.

IFAS-based runoff analysis: Chindwin River, Myanmar

A=27,420km²

- The 2-tank model (PDHM Ver.2) reproduced the 1st major flood peak level and the other major flood peak timings well, but low flows were much underestimated.
- The 3-tank model (PDHM Ver.1) reproduced both major flood peaks (timing and level) and their recessions better. The 1st major flood peak level seems overestimated, but this may show the possibility of inundation in the upstream of the gauging station.
IFAS-based runoff analysis: Kikuchi River, Japan

Parameters are calibrated using ground-gauged rainfall and measured discharge.

Why was the self-correction of GSMaP unsuccessful for this case?

Difference of frequency of Microwave (MWR) observation

Accuracy of rainfall distribution depends on the frequency of MWR observations (& accuracy of IR-based motion vectors)

- Image of microwave observation
- MWR obs. is once a few hours on average, but not always guaranteed.
- During no MWR period, rainfall field is transferred by IR-based motion vector.

Ozawa et al. (2010)
Global Precipitation Measurement (GPM)

Current Observation System:
- TRMM and other orbital Satellites, and 5 Geostationary Satellites

Core Satellite
- Dual Frequency Radar
- Multi Frequency Radiometer
- Observation of rainfall with more accurate and higher resolution
- Adjustment of data from constellation satellites

8 Constellation Satellites
- Satellites with Micro-wave Radiometers
- More frequent Observation

Cooperation:
- NOAA(US), NASA(US), ESA(EU), JAXA (Japan), China, Korea and others

- Earth heating Phenomena
- Study of Climate Change
- Improvement of forecasting system

Global Observation every 3 hours

Flood in Pakistan, 2010

- Heavy rain from late July due to monsoon which brought inundation wide-area in the Indus river and affected about 20 million people.
- In the KP province, “flash flood” brought most of the number of deaths in this flood event.
- In Peshawar, it rained 274mm/day (over 2 times as the highest record before)
- GSMaP underestimated. → The ICHARM’s self-correction-based or Thiessen-polygon-based corrections were conducted.

<table>
<thead>
<tr>
<th>Province</th>
<th>Deaths</th>
<th>Injured</th>
<th>House Damaged</th>
<th>People Affected</th>
<th>People Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khyber Pakhtunkhwa</td>
<td>5,162</td>
<td>3,031</td>
<td>286,769</td>
<td>2,634</td>
<td>4,854,598</td>
</tr>
<tr>
<td>Sindh</td>
<td>113</td>
<td>104</td>
<td>50,060</td>
<td>5,310</td>
<td>4,398,018</td>
</tr>
<tr>
<td>Sindh</td>
<td>85</td>
<td>84</td>
<td>1,994,914</td>
<td>2,177</td>
<td>4,854,016</td>
</tr>
<tr>
<td>Gilgit-Baltistan</td>
<td>75</td>
<td>67</td>
<td>2,000</td>
<td>No Info</td>
<td>24,000</td>
</tr>
<tr>
<td>Khyber Pakhtunkhwa</td>
<td>1,980</td>
<td>2,853</td>
<td>No Info</td>
<td>33,095</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,780</td>
<td>4,025</td>
<td>13,941</td>
<td>28,753,135</td>
<td></td>
</tr>
</tbody>
</table>

GSMaP_NRT (total amount: 7/27~31)
IFAS-based runoff analysis: Kabul River, Pakistan

Ground rainfall data were 2-7 times as many as GSMaP ones. This correction of GSMaP was made on the basis of each ratio of Thiessen polygon (Ground/GSMaP).

Although the runoff simulation with ICHARM’s self-correction algorithm without any ground-based rainfall data seemed best, this does not necessarily mean the truth. In any case, this shows the high potential of satellite-based runoff simulation.

Comparison between satellite-based inundation extent and inundation simulations with another ICHARM’s Rainfall-Runoff-Inundation (RRI) Model for Pakistan flood, August 2010

Runoff-inundation simulation can interpolate missing satellite-based information on flood inundation area caused by flash flood.

Sayama et al. (2010)
Dissemination activities

ICHARM Website to download IFAS (only IFAS-PDHM Ver.1.2 as of 2011/4)

http://www.icharm.pwri.go.jp/index.html

ICHARM will improve the system continuously to make it more user-friendly software and contribute to flood mitigation at local communities. (Ver.1.3 will be coming soon!)
Training workshops (2008 – 2011/3)

Purpose of the training course
To build capacities to undertake hydrological prediction/forecasting in relatively ungauged basins using satellite-based rainfall.

Program
• Remote Sensing of Precipitation from Space (JAXA)
• Introduction of river administration in Japan
• Introduction of Global Flood Alert System
• Operating procedures for IFAS
• Validation method of satellite-based rainfall
• Current conditions and problems in each country

International Workshop on Application and Validation of GFAS
2008: Ethiopia, Zambia, Cuba, Argentina, Bangladesh, Guatemala, Nepal (7 countries)
2009: India, Indonesia, Viet Nam, Bangladesh, Nepal, Laos (6 countries)

IFAS Seminars in overseas (sponsored by ADB, JAXA, UNESCAP, etc.)
Nepal (2009), Indonesia, Myanmar, Vietnam (2010), Pakistan, Thailand, and more (2011)

ICHARM Master Course, JICA short courses, etc.
IFAS to enhance local ownership of flood forecasts & in-situ observation network on the ground

Conclusion

- The combination of satellite-based rainfall information, global GIS data and IFAS (Integrated Flood Analysis System), as a practical toolkit for local users, especially in poorly-gauged river basins to integrate all those global information, has very high potential to promptly & efficiently implement flood analysis & forecasting system, in consideration with further step-by-step improvements in the future.

- Key valuable information can be acquired through satellite-based and global-GIS-based IFAS simulations even if the accuracy is not enough from the perspective of the coincidence of hydrograph.

- On the other hand, it should be also noted that, without any in-situ (ground-truth) data, such integrated information & analysis cannot be assured, verified nor improved.

- It is, therefore, indispensable to couple satellite & global GIS data with in-situ (geographical, geophysical and hydrologic) data in order to improve the quality (accuracy) of the integrated information & analysis and to upgrade the range & depth of application, which will lead to the establishment of local ownership of flood forecasting and warning.