Disclaimer

This report was compiled by an ADRC visiting researcher (VR) from ADRC member countries.

The views expressed in the report do not necessarily reflect the views of the ADRC. The boundaries and names shown and the designations used on the maps in the report also do not imply official endorsement or acceptance by the ADRC.

WIND INDUCED DAMAGE TO ROOFS

A Comparative Study on Roofs in Bhutan and Japan

Yeshey Lotay Visiting Researcher Asian Disaster Reduction Center (ADRC)

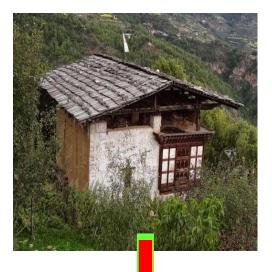
April 22, 2015

Overview

- 1. Background
- 2. Problem Statements
- 3. Scope and Objectives
- 4. Comparison of Japan and Bhutan Roofs
- 5. Recent Windstorm Damages
- 6. Analysis and Mitigations
- 7. Conclusions
- 8. Future Recommendations

Background

- Bhutanese rural home are constructed by the carpenters based on their indigenous knowledge.
- Rural home in Bhutan is non-engineered construction

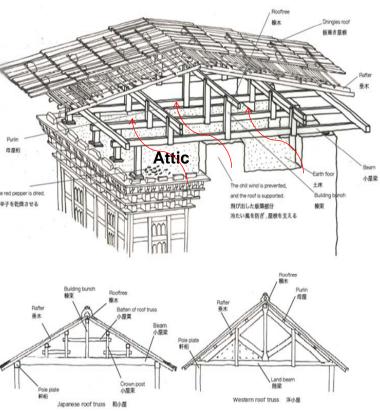

•Till early 1960's when Bhutan is not open the other world, people are using the wooden shingle or other local materials as roofing materials which is more eco-friendly and wind resistant

Changing period.....

 Roofing materials started changing from are wooden shingles and corrugated galvanized Iron (CGI) sheets in early 1980s

WHY THEY CHANGE?

- Durability and affordability for the rural people
- Environment conservation
- •Less maintenance cost



Hip-and-gable roof with CGI sheets

Typical Bhutanese Rural Roof Configuration

Roof slope 12⁰ – 15⁰
Space (attic) between roof floor and roof covering is use for hay and red pepper drying and use as open-air storage.

(source: Traditional Bhutanese Houses survey and research report, 2010)

Problem Statement

• More than 60% of population lives in rural area in Bhutan but people lack understanding on rural home roofs failure during windstorm in Bhutan.

• In 2011 & 2013 windstorms, 2424 & 1017 rural home roofs were damaged respectively

Lack of wind resistant features incorporation during
 RECONSTRUCTION

2013 Windstorm damage

Reconstruction

Scope and Objective

- To assess the rural home roofs in Bhutan based on the roofs; configuration, shape, slope, overhang, support string, connections and roofing materials and comparing with the Japanese traditional roof
- To assess the rural home roofs failure based on the existing roof configuration during the windstorm based on the literature review.
- Aim of this research is to help the common people of Bhutan to reduce the rural homes roof damage, economy losses during windstorm and to preserve our traditional Bhutanese architectural by suggesting some mitigations.

Comparison of Japan and Bhutan Roofs

Common rural home roofs in Bhutan:

- Gable roof (Kirizuma)
- Hip-and-gable roof(Irimoya)
- Jamthok roof
- Lean-to roof
- Drangrim roof

Lean-to and drangim roof

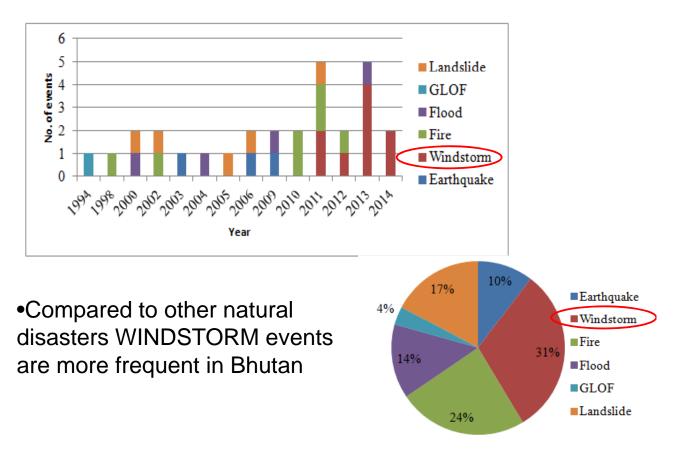
Gable roof

Jamthok roof

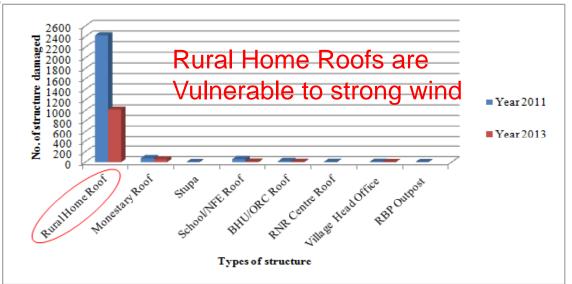
Comparison of Japan and Bhutan Roof

- Common rural home roofs in Japan:
 - Gable roof (Kirizuma)
 - Hip-and-gable roof(Irimoya)
 - Hip roof (Yosemune)

Gable roof


Hip-and-gable roof

Hip roof


Comparison of Japan and Bhutan Roof

Sl			
No.	Descriptions	Bhutan	Japan
1		gable, gable + hip roof (combined), lean	gable(kirizum), hip(yosemune),
	Type of roof	roof, Jamthok (monitor) roof & etc.	gable + hip (irimoya), hogyo roof
			and etc.
2	Type of roof	corrugated galvanized iron (CGI) sheet	tiles, thatch, plank, shingles, bark &
	material	metal, shingles, thatch, banana leaves,	etc
		bamboo, slates & etc.	
3	Roof	roof members act independently and no	members are connected rigidly using
	configuration	rigid connections between members.	the screws or bolt or nails
4		1 (500 0500)	
4	Roof overhang	large roof overhang (500mm-2500mm)	less roof overhang (around 0 –
			1500mm) usually around 600mm
5	Roof angle	roof slope between 12 ° - 15 °	roof slope various based on the
			location, e.g. in the snowy areas, roof
			slope is steep
6	Trusses	square or rectangular shape tie beam,	most members are circular timber in
	specification	timber batten purlin, circular rafters	traditional roof and batten in modern
			houses
7	Roof-to-wall	simply supported	rigid connections using bolt or nails
	connection		

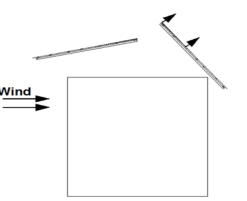
Recent Natural Disasters in Bhutan

2011 & 2013 Windstorm Damages

•In 2011 windstorm damage, 2424 rural home roofs damaged out of 2598 total damaged structures (93.30%)

•In 2013 windstorm damage, 1017 rural home roofs damaged out of 1093 total damaged structures (93.05%)

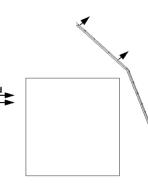
Common Type of Roof Failure - 1


CGI sheet lift/loss at roof edges and gable roof end

- Failure in timber section
- CGI sheets are intact on batten
- Timber batten section are not adequate to withstand wind pressure

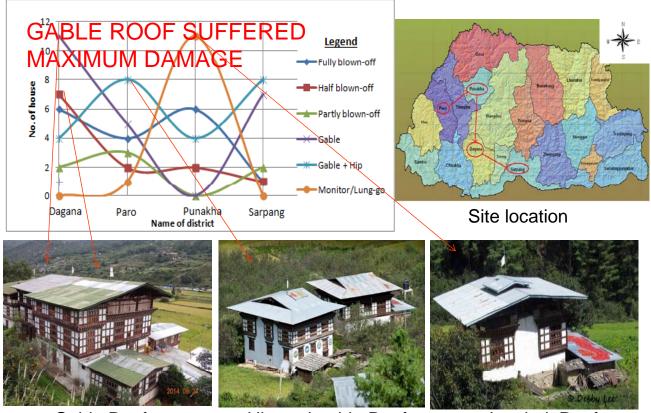
Common Type of Roof Failure - 2

Failure at roof ridge connections


Toe-nails

Timber lap joint with single 4-5inch toenail connection at roof ridge
Poor connection

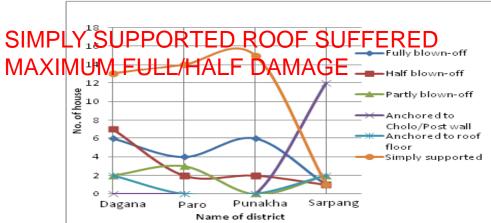
Common Type of Roof Failure - 3



Full blown-off or overturning of roof failure

No connection
roof-to-wall
connection
No connection
between struts
and attic floor

Analysis of Rural Home Roof

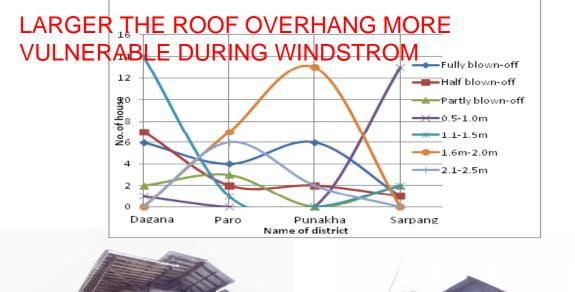


Gable Roof

Hip-and-gable Roof

Jamthok Roof

Analysis of Rural Home Roof

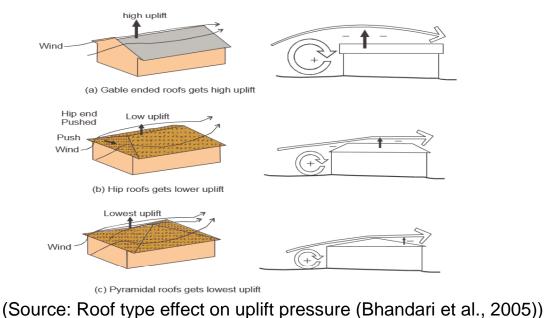


Half blown-off

Fully blown-off

Partly blown-off

Analysis of Rural Home Roof



MITIGATIONS

Roof Type Selections

HIP ROOF PERFORM BETTER THAN OTHER ROOF

MITIGATIONS

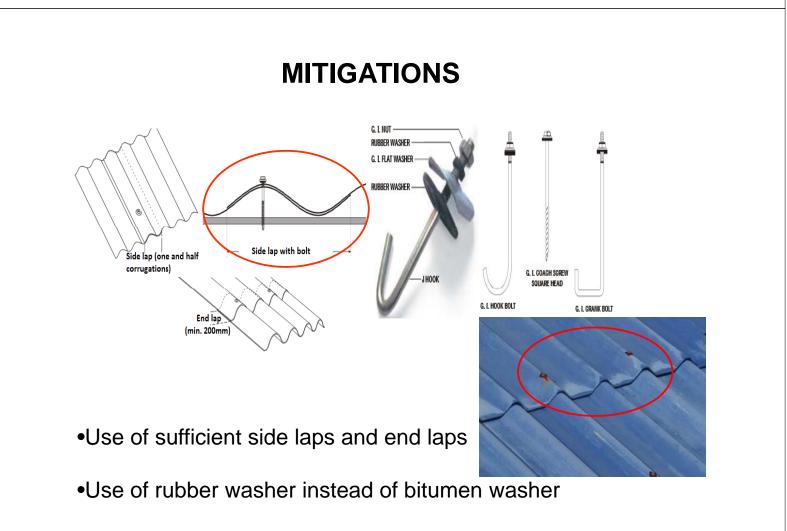
Rope Connection like Japanese roofs

Connect the rafters and purlins using rope/GI wires

MITIGATIONS

Use of metal strap and strong support string

MITIGATIONS


Use of sand bag (10-20kgs) Use of stone over the CGI sheet

MITIGATIONS

•Use of gable end stiffener and overhang ties

•Use of additional purlin and bracing

Conclusions

- Bhutanese roof is highly vulnerable to strong wind because most of the Bhutan rural home roofs were gable roof type with large roof overhang between 500mm and 2500mm. It was found that gable roof is weak during the windstorm especially with the large roof overhang.
- Bhutanese roofs act independently and roof configurations is very flexible and weak during windstorm
- Japanese roofs are wind resisted as compared to Bhutanese roofs

Conclusions

- Most common rural home roofs failure during the recent windstorms are gable end failure, ridge failure, roof-to-wall connection, timber section and pull through failure.
- Western part of Bhutan rural home roofs with large roof overhang are more vulnerable to strong wind as compared to southern region roof with smaller overhang.

Recommendations

- In this study, Bhutan rural home roof was assessed based on the literature review and damage reports of 2011 and 2013 windstorms. But it is not sufficient to conclude that Bhutan rural home roofs are still unsafe during the windstorm. Therefore, in the future study, more experimental test is required to conclude the behavior of Bhutan rural home roofs.
- More study need to carry out on the roof joinery and connection details.

